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ABSTRACT 

Raupach, M.R., 1989. Applying Lagrangian fluid mechanics to infer scalar source distributions 
from concentration profiles in plant canopies. Agric. For. Meteorol., 47: 85-108. 

It is well known that gradient-diffusion theory does not describe the transfer of scalar entities 
(such as heat, water vapour, C02 and pollutant gases) through the air in and just above plant 
canopies. An effective replacement is offered by an analytic Lagrangian method for calculating 
the concentration field of a scalar emanating from a steady spatially extensive source in an inho- 
mogeneous flow. The method can be labelled "localized near-field" or LNF theory. This paper first 
summarizes the assumptions and results of the LNF theory, leading to a simple solution for the 
"forward problem" of predicting the mean scalar concentration profile C (z) maintained by a given 
source density profile S (z). It is then shown how the theory can be applied to solve the "inverse 
problem" of inferring S ( z ) from measurements of C (z). 

INTRODUCTION 

Efforts to describe and unders tand canopy-atmosphere exchange are driven 
largely by two motives: (1) to model attributes of the canopy microclimate, 
such as the flux and concentrat ion profiles for heat and water vapour, using 
simple canopy and atmospheric parameters  as inputs; and (2) to use knowl- 
edge of the exchange process to infer biological or physical properties of the 
canopy which are otherwise hard or impossible to measure: in particular, to 
deduce flux and source-sink profiles for CO2 and trace contaminants  from 
measurements  of the associated concentrat ion profiles. This paper specifically 
addresses the second goal, but the techniques outlined here are also applicable 
to the first. 

To set the scene, we consider an arbitrary scalar enti ty such as heat, water 
vapour, CO2 or a contaminant  gas, letting S(z) be its source density profile 
(with a sink being a negative S), F(z) its vertical scalar flux density and C(z) 
its mean concentrat ion profile, where z is height above ground. For steady 
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conditions in an extensive, uniform canopy, advection is negligible and the 
scalar conservation equation reduces to 

z 

S(z)=dF/dz, F(z)=Fg+ fS(z)dz (1) 
o 

where Fg is the scalar flux density from the ground at z = 0. The next require- 
ment is a relationship between C(z) and F(z), or C(z) and S(z); in other 
words, a description of turbulent transfer in the canopy. The most common 
assumption has been the gradient-diffusion relationship 

F(z) = -K(z)dC/dz (2) 

where K(z) is an eddy diffusivity, a property of the turbulence in the canopy. 
It is now common knowledge that eq. 2 is inadequate in plant canopies, because 
K(z) is hopelessly erratic and cannot be specified uniquely in terms of turbu- 
lence properties. Most dramatically, Denmead and Bradley (1985, 1987) ob- 
served regions of countergradient flux, where K is negative, for heat, water 
vapour and CO2 transfer within a pine forest. The reason for the failure of eq. 
2 in canopies is that vertical scalar transfer is maintained by eddies with length 
scales of the order of the canopy height, h, so the vertical mixing process is not 
"fine grained" with respect to the C (z) profile. This contradicts the most basic 
assumption in the gradient-diffusion approach (Corrsin, 1974). 

The search for a physically sound description of turbulent transfer in can- 
opies follows two broad lines of enquiry: Eulerian (fixed frame) and Lagran- 
gian (fluid following). The Lagrangian approach, which is pursued here, aims 
to predict the mean scalar concentration field from a given source density by 
tracking an ensemble of "marked fluid particles" carrying the scalar (Monin 
and Yaglom, 1971; Durbin, 1983). Since the wind field must be specified, La- 
grangian dispersion theory is concerned only with scalar dispersion; this is the 
main limitation of the Lagrangian relative to the Eulerian approach, which 
can predict simultaneously the wind and scalar fields. The principal compen- 
sating advantage of the Lagrangian approach is that a fluid-following frame- 
work allows the effects of fluid particle history to be properly taken into ac- 
count. Because turbulent motions are coherent over finite length and time 
scales, fluid particle velocities exhibit persistence over time intervals of order 
TL, the Lagrangian integral time scale; consequently, the dispersion of a scalar 
cloud is non-diffusive in the near field, where the cloud travel time is small 
relative to TL, and diffusive in the far field where the travel time is large. 

In a plant canopy, these are important considerations because the dominant 
turbulent eddies are of the scale of the canopy height and hence persist in their 
motion through much of the canopy. The scalar field therefore reflects a su- 
perposition of both near-field and far-field dispersive influences, because the 
scalar material at any observing point emanates from both nearby and distant 
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source points. The consequences were examined by Raupach (1987) using a 
simple analysis of dispersion in homogeneous turbulence, which showed that  
persistence alone accounts for the main qualitative features of scalar transfer 
in a canopy: the observed shapes of concentration profiles, the appearance of 
countergradient fluxes in some circumstances and the important  part  played 
by turbulent transport  in the vertical scalar flux budget. That  so much can be 
predicted from such simple assumptions suggests that  the Lagrangian ap- 
proach has promise in the canopy context. 

Lagrangian dispersion theory, in its usual form, deals with the "forward 
problem" of predicting the concentration field, C, from a given, externally 
specified source density, S. However, most applications of a scalar transfer 
theory for plant canopies also involve the "inverse problem": predicting S from 
a given concentration profile, C. Solving the inverse problem is clearly the 
whole key to the second of the two practical goals mentioned at the outset, that  
of inferring sources and sinks from concentration data. The first goal, micro- 
climate modelling, also carries an implicit inverse component, since for most 
scalars of interest ( heat, water vapour and pollutants in particular) the source 
or sink density, S, depends on the scalar concentration, C, so one must find 
both S and C together. In short, most applications of a canopy transfer theory 
depend either explicitly or implicitly on a solution to the inverse problem. 

The main purpose of this paper is to develop a practical approach to the 
inverse (S from C) problem, and to illustrate its application to source-sink 
inference from concentration data. Naturally, a solution of the inverse problem 
relies upon prior adequate understanding of the forward problem. To achieve 
this, we use the "localized near-field theory" (LNF theory for short) developed 
by Raupach (1989) to predict the concentration profile, C, produced by a source 
profile, S, in a canopy. The paper is organised as follows: a thumbnail  sketch 
of the turbulent wind field in a canopy is given, summarizing experimental 
knowledge of the wind statistics needed for Lagrangian predictions of vertical 
scalar transfer. The LNF theory is summarized for predicting C from S, draw- 
ing from Raupach (1989) and a discretized, linear relationship between the 
source and concentration profiles, S and C is developed; this offers a solution 
to the inverse problem. Finally, the practicalities of applying the solution of 
the inverse problem to real concentration data are explored. 

THE CANOPY WIND FIELD AND SOME OF ITS IMPLICATIONS 

Lagrangian predictions of vertical dispersion require information about the 
probability density function of the vertical Lagrangian velocity W(t) of a 
marked fluid particle. In practice, sufficient information is obtained from the 
standard deviation aw and skewness Skw of w, the Eulerian (fixed-point) ver- 
tical velocity. Information is also needed about the persistence of W (t), which 
may be characterized by the Lagrangian integral time scale TL. This is defined 



88 

as the integral over the time delay (from zero to large delay) of the autocor- 
relation function for W(t); more intuitively, TL is the time scale over which 
W(t) remains correlated with itself due to the persistence of the turbulent 
motion. Unfortunately, TL is an intrinsically Lagrangian quantity which is 
difficult to infer from Eulerian velocity measurements. However, some guid- 
ance is available from the scale relationship of Corrsin (1963) for isotropic 
turbulence 

TL = flLw/ crw (3) 

where fl is a constant of order 1 and Lw is the Eulerian length scale for w, 
usually found from single-point data by using Taylor's frozen-turbulence hy- 
pothesis Lw = UTE, U being the mean streamwise wind speed and TE the single- 
point Eulerian time scale for w. Tennekes and Lumley (1972) argued from 
assumed spectral shapes that fl--4/3, while Snyder and Lumley (1971) mea- 
sured fl= 1 in grid turbulence. It must be stressed that eq. 3 can only ever give 
a rough estimate of TL in a canopy because of the strong anisotropy of the 
turbulence and because of high turbulence intensities which lead to the failure 
of Taylor's hypothesis. However, circumstantial evidence (mentioned near the 
end of the paper) suggests that eq. 3 with fl--- 1 provides a reasonable estimate 
of TL in a canopy. 

Figure i shows a collection of direct measurements of aw, L~/a~ and Skw for 
seven different canopies (two corn canopies, two forests and three wind tunnel 
models) with the canopy height, h, and the friction velocity, u,, as normalizing 
length and velocity scales. These data are drawn from the review of Raupach 
(1988); see Table 1 for details about the canopies and measurements. In almost 
all cases, the thermal stability was neutral or nearly so. All the data are from 
single vertical profiles, positioned to avoid obvious interference from nearby 
canopy elements. More detailed measurements in two of the canopies (WT 
Strips and Moga, see Table 1 ) indicated that this intuitively sensible position- 
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Fig. 1. Profiles of (a) aw, (b) L~,/a,, and (c) Skw in seven canopies listed in Table 1. Normalizing 
scales are the canopy height h and the friction velocity u.. 
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TABLE1 

Properties of seven canopies in Fig.  I a 

Canopy Reference h LAI t2(h)/u. Sensors b 

WT Strips Raupach et al. (1986) 60 mm 0.23 3.3 T/T 
WTWheat c 47 mm 0.50 4.1 T/T 
WT R o d s  Seginer et al. (1976) 19 cm 1.0 5.0 X/X 
Shaw Corn Shaw et al. (1974) 260 cm 3.0 3.6 C/F 
Wilson Corn Wilson et al. (1982) 225 cm 2.9 3.2 C,F/F 
Moga Forest ¢ 12 m 1.0 2.9 C,$3/$3 
Uriarra Forest Denmead and Bradley (1987) 16,20 m 4.0 2.5 C/S1 

aWT denotes wind tunnel; LAI leaf area index, bSensors (mean/turbulence): C = cup anemometer; 
F = split-film servo-driven anemometer; X = X-configuration hot-wire anemometer; T = co-planar 
triple hot-wire anemometer; S1 = single-dimension (vertical) sonic anemometer; $3 =three-di- 
mensional sonic anemometer, cPapers in preparation by Y. Brunet, J.J. Finnigan and M.R. Raupach. 

ing strategy provided a reasonable estimate of a truly horizontally averaged 
profile. 

A common structure is evident, even though the canopies vary widely in 
type, height, area index and foliage distribution. Above the canopy, aw varies 
little (Fig. 1 (a)) ,  though there is a tendency for aw/u. to increase with height 
z, from a value of ~ 1.1 at z =h  to a typical surface-layer value of ~ 1.25 at 
z > 2h. Within the canopy, the turbulence is quite inhomogeneous, with aw de- 
creasing rapidly as z decreases. The rate of decrease varies between canopies, 
being slowest for the W T  Strips canopy (colloquially known as the "tombstone 
canopy", because of the resemblance of the element array to a graveyard), 
where strong streamwise vortices form in the wake at the top of each bluff 
element. In all canopies, the probability density of w is non-Gaussian: the 
skewness Skw is negative and usually between - 0.5 and - 1 within the canopy. 
This is consistent with the known dominance of turbulence in the canopy by 
gusts -energetic, downward incursions of air into the canopy space from the 
faster moving flow above (Finnigan and Raupach, 1987). The dominant  tur- 
bulent eddies are also quite coherent and persistent, with streamwise and ver- 
tical length scales, Lu and Lw, of order h and h/3, respectively, at z=h  (Rau- 
pach, 1988). Such coherence implies tha t  TL is of the same order as the canopy 
time scale h/u. .  If the constant  fl in eq. 3 is taken as 1, then the data in Fig. 
1 (b) suggest tha t  TL ~ 0.3h/u. in the canopy, with little height variation. This 
result is in fair agreement with an independent determination of TL by Legg 
et al. (1986), inferred from measurements of far-field diffusivity in the plume 
from a lateral line heat source at height 0.8h in the WT Strips canopy; their 
TL profile is also shown in Fig. 1 (b). 

In summary,  canopy turbulence is (a) inhomogeneous, (b) persistent and 
(c) non-Gaussian (where the lettering corresponds to properties shown by the 
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frames in Fig. 1 ). The techniques for handling each of these characteristics in 
a Lagrangian framework are different and lead to a kind of hierarchy of La- 
grangian theories for tackling the forward ( C from S) problem. The turbulence 
characteristics are best approached in the order (b), (a), (c). At the most basic 
level, (c), persistence alone is a fundamental  and essential characteristic of 
turbulence, which can be studied for homogeneous, Gaussian turbulence using 
the classical analytic approach of Taylor (1921) and Batchelor (1949). This 
Lagrangian analysis quickly yields elegant and far-reaching results which were 
applied by Raupach ( 1987 ) to illustrate the importance of persistence in plant 
canopies, as already mentioned. However, the simple analytic approach is re- 
stricted in its pure form to dispersion in steady, homogeneous turbulence. At 
the opposite extreme in complexity is the numerical or "random-flight" ap- 
proach, which aims for a general description of dispersion in turbulence incor- 
porating all three of the characteristics (b), (a) and (c). Unfortunately, ran- 
dom-flight models can suffer from fundamental mathematical problems in non- 
Gaussian turbulence (Sawford, 1986; Thomson, 1987) and, furthermore, the 
calculations are both lengthy and stochastically noisy. These difficulties rep- 
resent formidable barriers to the application of the random-flight approach for 
microclimate modelling and source-sink inference in canopies. 

To obtain a theory which is both practical and reasonably realistic, Raupach 
{1989) developed an analytic Lagrangian theory for dispersion from continu- 
ous, spatially extensive sources in turbulence with persistence {b) and inhom- 
ogeneity (a), but without non-Gaussian properties (c). This theory occupies 
a middle level in the hierarchy of complexity, lying between the analytic ho- 
mogeneous-turbulence and the numerical random-flight theories. For reasons 
mentioned later, an appropriate label is LNF theory. The theory is based on 
two approximations which are exact in the homogeneous-turbulence limit, but 
remain adequate in the inhomogeneous turbulence typically found in canopies. 
The result is an expression for the concentration profile, C(z), from a given 
source density profile, S(z), which effectively replaces eq. 1 and, of course, 
admits the possibility of countergradient transfer in appropriate circumstan- 
ces. The question of whether it is justifiable to neglect the non-Gaussian as- 
pects of canopy turbulence can be answered by comparing the LNF theory with 
a random-flight theory (with due regard to the problems mentioned in the last 
paragraph). It turns out, as will be indicated below, that  this assumption is 
reasonable in most cases. The next two sections outline the LNF theory for 
the forward (C from S) problem. 

BASIC RESULTS FROM LAGRANGIAN DISPERSION THEORY 

This section summarizes some necessary basic material. Provided that  the 
Reynolds number is high enough, the dispersal of a scalar released from a source 
in a turbulent flow is statistically equivalent to the dispersal of an ensemble of 
marked fluid particles. To find the ensemble-averaged properties of the scalar 
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cloud (or the t ime-averaged properties of the cloud, in the case of a steady 
source in a steady flow), it suffices to assume that  the marked particles all 
move independently. We consider dispersal in only one dimension, the vertical, 
writing Z (t) for the height and W(t) = dZ/dt  for the vertical Lagrangian (fluid- 
particle-following) velocity of a marked particle. If unit  mass of the scalar is 
released from an instantaneous point source at z = Zo and t =  to, the ensemble- 
averaged concentrat ion field C(z,t) is equal to the particle transit ion proba- 
bility P (z,t; zo,to ). This is the conditional probability density that  Z (t) = z, given 
that  Z(to)=Zo; i.e., P dz is the probability that  a particle with a trajectory 
passing through the source at t ime to will pass at a later time, t, through a height 
element dz, located at z. The superposition principle then yields the mean con- 
centrat ion for a general, extensive source with density S (z,t) 

C(z,t) =f fP(z , t ;  Zo,to) S(zo,to) dzo dto (4) 

We restrict our at tention temporarily to steady, homogeneous turbulence 
with no mean vertical velocity, and consider the vertical dispersal of the scalar 
from an instantaneous point release of unit  mass (say from Zo--0, to--0). For 
this case, the evolution of the ensemble-mean scalar cloud depth 
az (t) = ( Z ( t ) z ) 1/2 (where angle brackets denote an ensemble average ) is given 
by the kinematic equation of Taylor (1921) 

t 

da~ 2 (' =2awJrL(s)ds (5) 
0 

where ra (S) = ( W ( t ) W ( t + s ) )/a2w is the autocorrelation function of W at time 
lag s. A good approximation for r a ( s )  is exp ( -- S/TL), where TL is the Lagran- 
gian integral t ime scale for vertical velocity. Equation 5 then gives 

a2z(t) =2a2wT~[t/TL - 1 + e x p  ( -- t /Ta) ] (6) 

Since both W(t)  and Z (t) have distributions which are approximately Gaus- 
sian in homogeneous turbulence (Batchelor, 1949), it follows that  P, and hence 
C, are given by 

1 [-z2 1 
C(z,t) =P(z,t; 0,0) = (2~)i/2az(t) exp 2~z(z(t) (7) 

Although the cloud shape is always Gaussian, eq. 6 shows that  the cloud depth 
behaves differently in the limits of small and large t/TL, known as the near- 
field and the far-field limits, respectively 

az(t) -~ awt (t/TL --*0, near field) (8a) 

az( t )-~ [2a2wTL(t--TL)] 1/2 (t/TL--*~, far field) (Sb) 

In the near field, persistence causes W(t)  to differ little from W(0) and the 
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particle trajectories Z (t) to depart little from straight lines, so the cloud depth 
grows linearly with t. In the far field, on the other hand, the effects of persist- 
ence are negligible and Z(t) behaves as a random walk, just as for a diffusion 
process. Hence, the dispersion is diffusive in the far field, but non-diffusive in 
the near field. 

Equations 6-8 specify the actual behaviour of the cloud. In the LNF theory, 
it is also necessary to consider a hypothetical "diffusion cloud" which spreads 
diffusively at all times, both far field and near field, and matches the real cloud 
as closely as possible in the far field. The diffusion cloud has a "diffusion tran- 
sition probability", Pf, which satisfies the diffusion equation 

OPf 0 [- OPf-] 

where Kf is the diffusivity of the medium. To match the real and diffusion 
clouds in the far field, it is necessary that  P-,P~ as t/TL~O5. This can be 
satisfied by noting that  for a diffusion cloud released at position z = 0 and time 
t= to in homogeneous, steady conditions (so that  Kf is constant) ,  the solution 
ofeq. 9 is a Gaussian Pf, like eq. 7, with depth 6zf(t)---- [2Kf(t-to)]1/2. Com- 
parison with eq. 8b shows that  the best match between the real and diffusion 
clouds in the far field occurs when 

Kf=a2wTa (10a) 

to=TL (10b) 

Equation 10a defines the far-field eddy diffusivity, which characterizes both 
the diffusion cloud and the real cloud in its far-field (diffusive) state. It is clear 
that  the real and diffusion clouds can never match in the near field, where 
persistence causes the real cloud to grow linearly with travel time, whereas the 
diffusion cloud always grows with the square root of travel time. The result is 
that  the real cloud spreads slower than the diffusion cloud in the near field 
(since t 1/2 grows much faster than t when t is small). It follows that  the best 
far-field match is achieved when the diffusion cloud is "handicapped" by being 
released after the real cloud; eq. 10b shows that  the optimum handicap is a 
time interval TL. Figure 2 illustrates the spread of the two clouds. 

In inhomogeneous turbulence, a~ and TL may both depend on z (and on t as 
well, if the turbulence is unsteady).  In these circumstances, there is no ana- 
logue of the analytic homogeneous-turbulence result for P, eqs. 6 and 7. How- 
ever, provided that  the inhomogeneity is not too strong, there is still an ap- 
proximate match in the far field ( t /TL-*~) between P and a diffusion 
transition probability Pf which satisfies eq. 9 with the inhomogeneous far-field 
diffusivity Kf(z) =a~(Z)TL(Z). The approximation of P by Pf in the far field 
becomes progressively worse as the inhomogeneity increases; available evi- 
dence (Sawford, 1984) indicates that  the approximation is satisfactory in the 
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Fig. 2. Real and diffusion clouds dispersing in the z dimension from an instantaneous point source 
in homogeneous turbulence. 

near-neutral atmospheric surface layer and in plant canopy turbulence, but 
unsatisfactory in a free convection surface layer. 

LOCALIZED NEAR-FIELD (LNF) THEORY FOR SCALAR TRANSFER IN A CANOPY 

We now consider scalar dispersal from a spatially extensive source in a plant 
canopy, where the turbulence is vertically inhomogeneous and is specified by 
given profiles aw (z) and TL (z). The problem is: given the concentration C(zR) 
at a reference level zR above (but close to) the canopy, what concentration 
profile C (z) is produced below ZR by a horizontally uniform source in the can- 
opy, with source density profile S (z)? For simplicity, attention is restricted 
here to the non-advective case of steady conditions and large uniform horizon- 
tal fetch x [though the theory is not restricted to this case, the extension to 
advective conditions being given by Raupach (1989) ]. It is necessary to ap- 
preciate the nature of the non-advective limit by noting that as x increases, the 
transfer becomes entirely vertical and the scalar conservation equation tends 
towards the simple balance S=dF/dz .  Furthermore, the difference 
C (z) - C (zR) becomes independent of x, even though C itself continues to in- 
crease with x (see Raupach, 1987, Fig. 1). Therefore, in the non-advective 
limit, C (z) - C  (ZR) is the same as for time-dependent dispersion in one dimen- 
sion from a steady source with density S (z), turned on at t--0 and producing 
a concentration profile C (z,t). This observation transforms the problem into 
that of finding the steady, large-time limit of C(z,t) - C(ZR,t). 

The essence of the LNF method is to find P for inhomogeneous turbulence, 
and hence C(z,t) from eq. 4, by making two assumptions. Both become exact 
only as the inhomogeneity vanishes, but the resulting theory is an adequate 
approximation for inhomogeneities at least as great as those found in typical 
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plant canopies. Assumption I is that  P may be approximated by Pf in the far 
field, or more precisely: for large travel times t - t o ,  the transition probability 
P(z,t; zo,to) for each source point (z0,to) approaches a diffusion transition 
probability Pf satisfying the diffusion equation, eq. 9, such that  

P(z,t; zo,to) ~ P~(z,t; Zo,to +TLo) as ( t--to) /TLo --*oo (11) 

where TLO = TL(Zo). The time delay TLO appears on the right of eq. 11 because 
it is required to obtain the best far-field match between P and Pf in homoge- 
neous turbulence (see Fig. 2). It follows that  P can be decomposed into a far- 
field, diffusive part, Pf, and a near-field, non-diffusive part, P, ,  such that  Pf-~P 
and P n ~ 0  as ( t - - t o ) / T L ~  

P(z,t; Zo,to) = Pf(z,t; zo,to + TLO) + Pn (z,t; zo,to) ( 12 ) 

The non-diffusive part  P~ = P - P f  is large only for ( t - to) /TL < 1, a modest 
range of travel times in which most marked particles do not spread vertically 
very far from the height, Zo, of the marking source point and are confined to a 
height interval with depth of order aw (Zo) TL (Zo). Provided the inhomogeneity 
is not too strong, conditions in this narrow height range will not depart far 
from homogeneity. This motivates Assumption II: Pn (z,t; zo,to) can be approx- 
imated by its value in locally homogeneous turbulence, with velocity and time 
scales aw(Zo) and TL(Zo). Since both P and Pf are known in homogeneous 
turbulence, P~ is easily found. Assumption II is the reason for the name of the 
LNF method. 

To find the concentration C(z,t), it is also split into a far-field term Cf and 
a near-field term C~ 

C(z,t) =Cf(z,t) + C~(z,t) (13) 

Putt ing eq. 12 into eq. 4 (and taking care that  the integration of Pf over to does 
not extend beyond to + Tao = t), it follows that  

oo t - -  TLo 
t ~  

Cf(z,t)= }S(zo) ~ Pf(z,t; zo,to + TLO) dt0 dzo (14a) 
0 0 

cx> t 

C,(z,t)= ~ S(zo) |Pn(z,t; zo,to) dto dzo (14b) 
IQ t~ 

0 0 

The diffusive part, C~, of C can be written down immediately for the non-ad- 
vective case under consideration (in which t/TL approaches infinity and 
C(z) - Cf(z) is independent of t). Since Pf obeys eq. 9, Cf obeys an associated 
gradient-diffusion relationship of the form of eq. 2 

F(z) = - K f ( z )  dCf/dz (15) 
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where Ke(Z)=a~(Z)TL(Z) and where F(z) is related to S(z) by eq. 1. Inte- 
grating eq. 15, Cf is found to be 

ZR 

z 

(16) 

where C (z~) is a given boundary condition and C n (ZR) is determined below. 
This completes the task of writing Cf in terms of S. 

Turning now to the non-diffusive part, Cn, it is helpful to introduce the in- 
tegrated transit ion probability 

t 

J(z,t; Zo) = f P(z,t; zo,to)dto 
0 

(17) 

which is equal to the concentrat ion field at time t from a steady unit  point 
source at Zo, turned on at to=O. From eq. 4, C(z,t) can be expressed in terms 
of J with a single height integral 

C(z,t) = f S(zo)J(z,t; Zo) dzo 
0 

(18) 

Just  as for P and C, J can be decomposed into a diffusive part, Jf, and a non- 
diffusive part, Jn, such that  

J(z,t; Zo) --Jf(z,t; Zo) +Jn(Z,t; ZO) (19) 

where Jf  and Jn are equal to the inner (t ime) integrals in eqs. 14a and b, re- 
spectively. The relationships between Cf and Jf, and between Cn and Jn, are 
identical to eq. 18. For the case of homogeneous turbulence, the explicit forms 
for J and Jf  are 

t 

f , [,zzo 21_ J(z,t;zo)= (21r)l/2az(tl)exp -_--57~., Idtl 
26z(t1) _] 

0 

(20a) 

t - -  TLO 

Jf(z,t; Zo)= f 
0 

1 
( 27c ) l/2azf( t2) exp [ -  ( Z-- Zo)2-]_ ~ ~  Jolt2 (20b) 

where az(t) is defined by eq. 6, and azf(t) = (2a2woTLot) lz2 (with awO=aw(Zo), 
Tao = TL (Zo) ). The dummy variables t, and t2 are related to to by t, = t -  to and 
t2 = t -Tao- - to .  Figure 3 shows the t ime durations of the steady, unit point 
sources which contribute to the real cloud J and the diffusion cloud J,-, indi- 
cating the relationship between the instantaneous real and diffusion releases 
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Fig. 3. Relationship between the continuous, point, unit sources, dispersing in the z dimension, 
which produce the real cloud J and the diffusion cloud Jr. 

Fig. 4. J(z, t; zo) and Je (z, t; zo )in homogeneous turbulence. The shaded area represents the differ- 
ence Jn(z,t; Zo) =J(z,t, zo) -Jf(z,t; Zo). 

which match in the far field, while Fig. 4 shows J, Jf and the difference 
J~ =J-Jf, for homogeneous turbulence. 

Assumption II implies that Jn for inhomogeneous turbulence is equal to its 
value for homogeneous turbulence. This value (the difference between the in- 
tegrals 20a and 20b) quickly approaches a steady limit as the upper integration 
limit t increases; in practice, t/TLo > 5 is sufficient, because P .  attenuates rap- 
idly with increasing travel time and is negligible for travel times greater than 
~ 5Tao. In an extensive canopy, the only concern is with Jn at large times, 
t >> 5 TLo, so consideration can be restricted to the steady limit of J ,  (z,t; Zo) as 
t/TLo-~. This limit defines a dimensionless "near-field kernel function" 

k n ( ~ ) - ~  lim awoJn ( (~wo TLo~,TLo ~; O) 
$ ~ o o  

(21) 

where ~= (z-zo)/(awoTao) and 3= t/Tao are dimensionless length and time 
variables, and the factor awo is included to non-dimensionalize Jn. The func- 
tion kn, shown in Fig. 5, has several useful properties. Firstly, it is symmetric 
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Fig. 5. The near-field kernel function, kn (~), and its integral with ~. 

in ~ [i.e., kn(~) = k n ( - ~ )  ] because J,  Jf  and Jn are all symmetric in Z-Zo for 
homogeneous turbulence. Secondly, we have 

i kn (~)d~-- 1 (22) 

[This follows from eq. 20, by whichJ(z,t; Zo) is the concentration from a steady 
source with strength (emitted scalar mass per unit  t ime) F ,  = 1, turned on 
between 0 and t, and Jf(z,t; Zo) is the concentrat ion of the diffusion cloud from 
a source with F ,  = 1, turned on between TLO and t. The J and Jf  clouds therefore 
contain mass F,t and F ,  ( t -TLO),  respectively, so Jn contains mass F, TLo. 
Non-dimensionalizing with F,, awO and TLO, eq. 22 is obtained.] Thirdly, al- 
though no analytic form for k, (~) is available, a simple and adequate analytic 
approximation is 

kn(~)  --  -0.39894 I n ( I - e - ' ; ' )  -0.15623 e -I; (23) 

which is derived in Raupach (1989). 
From eq. 18 in its form relating C n to Jn and eq. 21, C n c a n  be written directly. 

To apply the homogeneous-turbulence result for kn to the flow in the canopy, 
which is bounded at z = 0, an image source density and turbulent  flow are in- 
troduced below the ground, as in the homogeneous-turbulence calculations of 
Raupach (1987). The result for Cn is 
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co  

-[- R n I - -  d z  0 
J a,,o L L (:TWO 1 LO .J TLo 
0 

(24) 

where the zero subscript denotes Zo dependence: ¢wo = aw (Zo), TLO = TL (Zo). The 
dependence of Cn on t is dropped because Cn is independent of t for t> 5TLo, 
just as for Jn. Equation 24 shows that the near-field contribution Cn(z) is the 
convolution of S with the near-field kernel function kn. 

The LNF solution to the forward (C from S) problem in non-advective con- 
ditions is now complete. We have C= Cf+ Cn, with Cf given by eq. 16 and C, by 
eq. 24. The character of the solution in practice is indicated in Fig. 6, which 
shows profiles of C and Cf for two source densities, S, typical of daytime heat 
and water vapour source distributions in forest canopies. The assumed profiles 
a~ (z) and TL (z) are also shown. In both S (z) profiles, the upper (crown) peak 
accounts for 90% of the overall scalar flux density F. =F(h)  from the canopy, 
while the lower (understorey and ground) peak accounts for the remaining 
10%. The upper peak is sharp in Case A, but more vertically diffuse in Case B. 
Several features are noteworthy: firstly, the main small-scale structure in C (z) 
is imparted by Cn (the difference between C and Cf), which tends to induce 
peaks in C at the heights of peaks in S. By comparison, Cfhas a much smoother 
profile which reflects little of the shape of S and serves mainly to set the large- 
scale variation in C. Secondly, the local peaks in Cn can be strong enough to 
cause a gradient reversal in C(z) just below a peak in S(z), as in Case A. Be- 
cause F(z) is positive, this situation represents a countergradient flux..Thirdly, 
the detailed shape of C(z) is very sensitive to S (z) because of the small-scale 
structure preserved in Cn. Thus, a minor increase in the spread of the upper 
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Fig. 6. (a) Assumed profiles of aw and TL; (b) source density profiles for Cases A and B; (c) flux 
densities F(z) from eq. 1; (d) far-field and total concentrations Cf(z) and C(z). Normalizing flux 
and concentration scales are F. =F(h) and c. =F./u,, respectively. 
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peak in S (z) causes the countergradient  flux observed in Case A to disappear 
in Case B. 

The assumptions of the LNF theory (strictly valid only in weakly inhomo- 
geneous turbulence) have been tested by careful comparisons between LNF 
and a random-flight model (Sawford, 1986). The results, given in Raupach 
(1989), show that  the LNF assumptions are tenable in turbulence at least as 
inhomogeneous as that  in typical plant  canopies. The random-flight model was 
also used to test the effect of skewness (which is neglected in the LNF theory ); 
it was found that  the effect of skewness on the C profile from a given S is trivial 
for 0 >~ S k w  >~ - 0.5 and quite small for S k w  >~ - 1, ranges which encompass al- 
most all of the data in Fig. 1 (c). Hence, the neglect of skewness in the LNF 
theory appears to be a reasonable simplification. 

THE DISPERSION MATRIX AND THE INVERSE PROBLEM 

Having obtained a robust, analytic solution to the forward (C from S) prob- 
lem, practical methods are required for the inverse (S from C) problem. It is 
convenient to restrict discussion to non-advective conditions, as in the pre- 
vious section, and to consider the problem in discrete form. 

Suppose that  the canopy source is divided into m layers, each having a uni- 
form source density, Sj, where j = 1,...,m. The top of layer j is at zi, with Zm = h, 

and the depth of layer j is 3 z  i = z j -  z j_  1. Any flux of scalar from the ground is 
assumed to be lumped in with the source from the lowest layer (though this is 
not a necessary simplification). Let us also suppose that  there are n heights zi 

( i =  1 .... ,n) at which a profile of mean scalar concentrations Ci ( i =  1,...,n) is 
measured; the top profile height, zn, coincides with a reference level Zn=ZR 

above the canopy, at which the concentrat ion is Cn= CR. The source layers 
( j=  l - m )  and the profile heights for concentrat ion measurement  ( i =  l - n )  are 
shown in Fig. 7; it is important  that  the two sets of heights can be fixed quite 
independently and need not coincide in any way. 

Consider now a scalar tracer which is released uniformly in layerj  with source 
density s; the tracer source density is zero in all other layers. The resulting 
tracer concentrat ion profile, ci, defines a dispersion matrix D with elements 
Dij is given by 

ci - cR (25 )  
D i i -  sAz~ 

which is the concentrat ion at measurement  height i (relative to the reference 
concentrat ion at zR) produced by a uniform unit source, extending vertically 
throughout layer j, but zero elsewhere. The matrix D can be calculated from 
any canopy transfer  theory which solves the forward problem and, in particu- 
lar, can be found from the LNF theory, given the turbulence properties aw (z) 
and TL (z). Once D is known, the concentration profile from an arbitrary source 
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Fig. 7. Source layers and concentration measurement heights for the inverse problem. 

profile, Si, is given by the superposition principle (which states that if source 
densities $1 and $2 produce concentration fields Ct and Ce, then $1 + $2 pro- 
duces C1 + C2). It follows that 

Ci - CR = ~ Dij Sj Azj ( 26 ) 
] = 1  

This is simply the solution to the forward problem written in discrete form; it 
is valid whether or not the sources Sy depend on the local ambient 
concentrations. 

The solution to the inverse problem is now straightforward in principle. 
Choosing rn = n, so that Sj is sought in the same number of  source layers as 
there are concentration values Ci, eq. 26 becomes a set of m linear equations 
which can be solved for the source profile S t. Hence, the solution is unique 
(since linearity ensures uniqueness)  and it is also mathematically easy. How- 
ever, it is not necessarily stable: small errors in C i ,  a w (Z) or TL (Z) may well be 
amplified to produce unacceptable errors in the inferred S t. Preliminary at- 
tempts at solving eq. 26 for S t, using measured concentration profile data at 
n = m heights, showed clearly that the instability is catastrophic. 

The way to overcome this problem is to include redundant concentration 
data, so that source densities, Sj, in m layers are sought from n measured con- 
centration values, C~, with n > m. The S t values producing the best fit to the 
measured Ci can be found with a least squares procedure, by minimizing the 
squared error (e) defined by 

~-- ~ (C i - -C i )  2 ( 2 7 )  

i = l  
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where Ci are the predicted concentrations from eq. 26. Substituting these into 
eq. 27, e becomes 

The Sj values which minimize e are given by 

Oe/OSj=O (]=l,...,m) (29) 

which is a set of rn linear equations in the unknowns, S t, taking the explicit 
form 

AikSh=B i (]=1 .... ,m) (30) 
k = l  

where the matrix with elements A~k and the vector with elements Bj are defined 
by 

n 

Ajk = ~ DiiAzjDikAzh (31a) 
i = 1  

Bj= ~ (C~-CR)D~jAzi (31b) 
i = 1  

Hence, eq. 30 replaces eq. 26 as a set of equations for m values of S t. The 
inherent redundancy (when n >  m) ensures that  the resulting solution, St, is 
not oversensitive to Ci. When there is no redundancy (n- -m) ,  eq. 30 degen- 
erates to the original equation set, eq. 26. 

HOW MUCH TURBULENCE INFORMATION IS REQUIRED? 

Like the forward (C from S) problem in a Lagrangian framework, the in- 
verse (S from C) problem can only be solved when certain turbulence statistics 
are specified in advance. The solution developed here requires profiles of aw (z) 
and TL(Z), which determine the dispersion matrix D. Normally, one will not 
have the luxury of a complete set of turbulence measurements to determine 
these profiles; and even if extensive turbulence data are available, there re- 
mains the problem of inferring TL from Eulerian turbulence data, as discussed 
briefly above. Hence, it is usually necessary to estimate profiles of aw and TL, 
using scaling laws and simple, assumed profile shapes within the canopy which 
are consistent with existing data such as Fig. 1. For example, Raupach (1988) 
suggested that  aw(Z) and Ta(z) may be approximated by the piecewise linear 
profiles shown in Fig. 8, which obey 

aw(Z)/u.=al (z/h> 1) (32a) 

aw(Z)/U.--ao+ (al -ao)z/h (z/h<l) (32b) 
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Fig. 8. Assumed simple profile shapes for aw and TL. 

TL (Z)U, F k(z-d)'~ 
h -maxkco ,  a-~ J (33) 

where k is the von Karman constant and d the zero-plane displacement, so that 
the term proportional to (z-d)  in eq. 33 is the inertial sub-layer form for TL 
which applies well above the canopy. For approximate consistency with most 
of the data in Fig. 1, the constants are al = 1.25, ao = 0.25, Co = 0.3. 

Clearly, aw(z) and Ta(z) in any specific canopy will only approximately 
conform to such an idealization. It is therefore necessary to investigate the 
extent to which an inferred source profile, Sj, is sensitive to erroneous assump- 
tions about aw (z) and TL (z). To do this, eq. 26 was used to calculate the con- 
centration profile, Ci, for a given, initial source profile, with D determined by 
using aw(z) and TL(Z) from eqs. 32 and 33 as "correct" turbulence profiles. 
The calculated Ci was then used to predict the source profile Sj- by solving eq. 
30, using a D determined from altered, "incorrect" profiles of aw and TL. The 
difference between the initial and final source profiles indicates the sensitivity 
of eq. 30 to a~ and T L. 

Figure 9 shows an example of such a calculation in which a~ (z) is perturbed 
while holding TL (z) equal to its initial, "correct" form. The initial source pro- 
file was bimodal, similar to Source B in Fig. 6. This initial S(z) and the cor- 
responding flux profile F(z) (obtained from eq. 1 with Fg=O) are shown as 
heavy solid lines in Fig. 9(b) and (c), respectively. Figure 9(a) shows four 
"incorrect" assumptions about aw (z), each a linear profile; they were obtained 
by increasing and decreasing a~ near the top of the canopy and likewise near 
the bottom of the canopy. The inferred S (z) and F(z) profiles obtained with 
these "incorrect" aw profiles are shown in Fig. 9(b) and (c). In general terms, 
a fairly straightforward result is obtained: where aw is erroneously high, an 
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Fig. 9. Sensitivity of the solution to the inverse problem with respect to aw, with Tn held constant 
a s  in Fig. 8. (a) Perturbed a~ profiles; (b) inferred perturbed S profiles; (c) inferred perturbed F 
profiles. Heavy solid lines in (b) and (c) indicate original, unperturbed profiles of S and F. 
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Fig. 10. Sensitivity of the solution to the inverse problem with respect to TL, with a~ held constant 
a s  in Fig. 8. (a) Perturbed TL profiles; (b) inferred perturbed S profiles; (c) inferred perturbed F 
profiles. Heavy solid lines in (b) and (c) indicate original, unperturbed profiles of S and F. 

erroneously high S (z) value is inferred, and vice versa. A given fractional error 
in aw induces a somewhat higher fractional error in S (z). 

Figure 10 shows the results of  a similar calculation in which TL(Z) is per- 
turbed while aw (z) is held constant at its "correct" form. A very similar overall 
result is obtained: a high TL leads to an overestimate of  S (z) and vice versa. A 
given fractional error in TL induces a lower fractional error in S (z),  in contrast 
to the case of a~, so TL is a less sensitive parameter in the calculation than aw. 
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This is useful because a~ can be directly measured, in principle, with sonic 
anemometers or other turbulence sensors, whereas TL is hard to infer from 
Eulerian measurements, as already discussed. The calculations leading to Figs. 
9 and 10 have been repeated for various other initial source profiles, always 
with the same general conclusions. 

EXAMPLE OF CALCULATION OF S FROM C 

The solution to the inverse problem has been tested with turbulence and 
concentration data from a wind tunnel experiment on scalar dispersion from 
an elevated plane source within a canopy (Coppin et al., 1986). The experi- 
ment was carried out in the WT Strips canopy (Fig. 1 and Table 1 ). The pas- 
sive scalar was heat, released at a power Hs= 275 W m -2 from an array of wires 
stretched laterally between the elements, at a height of 0.8h (h-- 60 mm ). The 
turbulence profiles used to calculate D are shown in Fig. 11 (a); the uw profile 
closely resembles the data in Fig. 1 (a), while the TL profile follows the profile 
of Lw/a~ in Fig. 1 (b) with somewhat more abstraction. A particular measured 
temperature (scalar concentration) profile was chosen randomly from the data 
set (see Fig. 11 (b)). This was done in preference to using an averaged tem- 
perature profile to see the effect of noise in the data. Figure 11 (c) and (d) 
shows the heat source density profile, SH (Z), and the heat flux profile, H(z),  
inferred from that temperature profile using eq. 30. The calculations were done 
for both m = 4 and m = 8 source layers in the canopy (solid and dashed lines, 
respectively). 

The predictions of H from eq. 30 may be compared with the measured eddy 
covariance heat flux profile and also with the value Ha of the electrically ap- 
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Fig. 1 l. Test of the solution to the inverse problem with data from an experiment on the dispersion 
of trace heat from an elevated plane source in a wind tunnel model canopy. (a) Assumed aw and 
TL profiles; (b) measured temperature profile; (c) inferred profile of heat source density S~; (d) 
inferred heat flux profile. Solid lines, m=4; dashed lines, m=8; squares in (d), measured eddy 
covariance heat flux; arrow in (d), applied electrical power. 
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plied heat flux (both shown in Fig. 11 (d)).  The eddy covariance heat flux at 
canopy height h is ~ 20% less than Hs because of some advection in the canopy 
(accounting for ~ 10% ) and also some high-frequency and high-wave-number 
loss in the eddy covariance measurements (accounting for the other 10% ). 
Bearing this in mind, there is good agreement between the measured heat flux 
profile and those inferred from eq. 30. The noise in the temperature profile 
does not appear as an unacceptable noise level in the inferred SH profile, al- 
though naturally the SH profile with m-- 8 is noisier than that  with m = 4. 

A final point concerns the choice of TL. The TL profile in Fig. 11 (a) is based 
on the L Jaw profile in Fig. 1 (b), with the assumption that  fl= 1 in eq. 3. In 
other words, this TL profile is inferred from single-point turbulence data. It is 
somewhat different from the diffusivity-based TL profile deduced by Legg et 
al. (1986) using the measured far-field diffusivity from a lateral line source in 
the same canopy, also at height 0.8h; that  TL profile suggests TLu./h ~ 0.3 in 
the canopy, with little height variation. It is quite possible that  the disagree- 
ment  between the two TL profiles is due simply to measurement error, since 
the diffusivity-based TL values were inferred from very small far-field fluxes 
and gradients which tested the resolution of the instrumentation If the diffu- 
sivity-based TL profile is used instead of the one based on single-point turbu- 
lence data, then the agreement between measured and inferred flux profiles is 
substantially worsened; the inferred H value at z= h reduces from ~ 260 to 160 
W m -2 in comparison with Hs--275 W m -2. This provides some indication 
that  TL values inferred from single-point turbulence data, using eq. 3 with 
fl-- 1, may be reasonable. 

CONCLUSIONS 

I have distinguished two problems which a theory of scalar transfer in can- 
opies must  address: the "forward problem" of predicting the mean concentra- 
tion profile C(z) from a given source density profile S(z),  and the "inverse 
problem" of predicting S(z) from a given C(z). An analytic Lagrangian dis- 
persion theory, labelled LNF theory, offers a practical solution to the forward 
problem. The theory is based on two assumptions: (I) that  dispersion in the 
far field is diffusive, satisfying the diffusion equation and hence a gradient- 
diffusion relationship with the far-field eddy diffusivity Kf(z) =a~ (z) TL(Z), 
where aw and TL are the standard deviation and Lagrangian time scale for 
vertical velocity; and (II) that  near-field effects close to a particular source 
point in the canopy can be treated by regarding the turbulence as homogeneous 
with values of aw and TL equal to those at the source point. Both assumptions 
are exact in the homogeneous-turbulence limit, but adequate in the inhomo- 
geneous turbulence typically found in canopies. The theory leads to a simple 
expression for C(z) in terms of S (z), which is obtained by expressing C (z) as 
the sum of a diffusive, far-field contribution Cf(z) and a non-diffusive, near- 
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field contribution Cn(z): C(z)=Cf(z)+Cn(z). Expressions for Cf and Cn are 
given in eqs. 16 and 24. 

The LNF theory for the forward (C from S) problem yields the conclusion 
that  C(z) carries substantial information about S(z) through the near-field 
contribution, Cn (z), which is the convolution of S with a "near-field kernel 
function" kn (see eq. 23 and Fig. 5). In other words, peaks in S(z) produce 
peaks in Cn(z) and thence tend to produce peaks in C(z) (see Fig. 6 and the 
associated discussion). This explains observations of countergradient fluxes, 
since peaks in C(z) imply gradient reversal without flux reversal. More im- 
portantly, though, the possibility is raised of inferring S from measurements 
of C; that  is, of solving the inverse (S from C) problem. Because k, is a very 
sharply peaked function of height, C~ (z) contains a detailed "signature" of 
S(z) with little smoothing in z, so in principle it should be possible to infer 
S (z) with high resolution in z. In this respect, the inverse problem in a canopy 
is akin to deconvolution problems in astrophysical image resolution. 

The practical approach to the inverse problem is to define a "dispersion 
matrix", D, such that  an element Dij is equal to the concentration at measure- 
ment  height i (relative to a reference concentration above the canopy) pro- 
duced by a uniform unit source in layer j of the canopy. The dispersion matrix 
can be found with the LNF theory for the forward problem (though another 
theory could also be used). According to the LNF theory, D is a property of 
the turbulence statistics aw (z) and TL (z), which must be known by measure- 
ment  or assumed from scaling laws. The superposition principle implies that  
a concentration profile Ci and a source density profile S i (both in discrete form) 
are related linearly by D, so the inverse problem is reduced to the solution of 
a set of linear equations with unknowns Sj and coefficients Dii. In practice, it 
is necessary to use a least-squares method to fit values of Sj in m canopy layers 
to a measured n-point concentration profile where n > m, so that  there is enough 
redundant  information in the concentration profile to make the solution, Sj, 
stable to noise in the concentration profile. 

The practicality of the solution to the inverse problem has been tested in 
two ways. Firstly, sensitivity tests show that  the solution to the inverse prob- 
lem is not unduly sensitive to either aw or TL, though the sensitivity is higher 
for aw than TL. Secondly, the solution has been tested with wind-tunnel data 
on the dispersion of trace heat from an elevated plane source in a canopy. Good 
agreement was found between the directly measured heat flux profile from 
eddy covariance and the heat flux profile inferred by applying the solution of 
the inverse problem to a measured temperature profile. 

For field application of the solution to the inverse problem, a~ and TL would 
normally be inferred from one (or at most a few) sonic anemometers, using 
Lw/aw as an approximation for T L (where Lw is the single-point Eulerian length 
scale for vertical velocity). It remains to be seen whether this level of turbu- 
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lence information is adequate for inferring S (z) from measurements of C (z) 
in field canopies. 
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